Padasalai’s Telegram Groups!

- Padasalai's NEWS - Group
 https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA

- Padasalai's Channel - Group
 https://t.me/padasalaichannel

- Lesson Plan - Group
 https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw

- 12th Standard - Group
 https://t.me/Padasalai_12th

- 11th Standard - Group
 https://t.me/Padasalai_11th

- 10th Standard - Group
 https://t.me/Padasalai_10th

- 9th Standard - Group
 https://t.me/Padasalai_9th

- 6th to 8th Standard - Group
 https://t.me/Padasalai_6to8

- 1st to 5th Standard - Group
 https://t.me/Padasalai_1to5

- TET - Group
 https://t.me/Padasalai_TET

- PGTRB - Group
 https://t.me/Padasalai_PGTRB

- TNPSC - Group
 https://t.me/Padasalai_TNPSC
OBJECTIVES (CHAPTER 1)

12th Standard
Business Maths

Exam Time : 00:30:00 Hrs

Reg.No. : ____________________

Total Marks : 25

25 x 1 = 25

Date : 14-Sep-19

1) If A=(1 2 3), then the rank of AA^T is
 (a) 0 (b) 2 (c) 3 (d) 1

2) The rank of m×n matrix whose elements are unity is
 (a) 0 (b) 1 (c) m (d) n

3) If T= \[
\begin{pmatrix}
A & B \\
0.4 & 0.6 \\
0.2 & 0.8
\end{pmatrix}
\]
 is a transition probability matrix, then at equilibrium A is equal to
 (a) \(\frac{1}{4} \) (b) \(\frac{1}{5} \) (c) \(\frac{1}{6} \) (d) \(\frac{1}{8} \)

4) If A= \[
\begin{pmatrix}
2 & 0 \\
0 & 8
\end{pmatrix}
\]
 then \(\rho(A) \) is
 (a) 0 (b) 1 (c) 2 (d) n

5) The rank of the matrix \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{pmatrix}
\]
 is
 (a) 0 (b) 1 (c) 2 (d) 3

6) The rank of the unit matrix of order n is
 (a) \(n-1 \) (b) n (c) \(n+1 \) (d) \(n^2 \)

7) If \(\rho(A) = r \) then which of the following is correct?
 (a) all the minors of \(A \) vanish (b) \(A \) has at least one minor of order \(r \) vanish
 (c) \(A \) has at least one minor of order \(r+1 \) and higher order r which does not vanish
 (d) all \(r+1 \) and higher order minor which vanishes order minors should not vanish

8) If \(A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \) then the rank of \(AA^T \) is
 (a) 0 (b) 1 (c) 2 (d) 3

9) If the rank of the matrix \[
\begin{pmatrix}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
-1 & 0 & \lambda
\end{pmatrix}
\]
 is 2. Then \(\lambda \) is
 (a) 1 (b) 2 (c) 3 (d) only real number

10) The rank of the diagonal matrix \[
\begin{pmatrix}
1 & 0 \\
2 & -3 \\
0 & 0
\end{pmatrix}
\]
 is
 (a) 0 (b) 2 (c) 3 (d) 5

11) If \[T = \begin{pmatrix}
A & B \\
B & C
\end{pmatrix} \]
 is a transition probability matrix, then the value of x is
 (a) 0.2 (b) 0.3 (c) 0.4 (d) 0.7

12) Which of the following is not an elementary transformation?
13. If \(\rho(A) = \rho(A, B) \) then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Inconsistent and inconsistent

14. If \(\rho(A) = \rho(A, B) \) the number of unknowns, then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Inconsistent and consistent

15. If \(\rho(A) \neq \rho(A, B) \), then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Inconsistent and consistent

16. In a transition probability matrix, all the entries are greater than or equal to
(a) 2
(b) 1
(c) 0
(d) 3

17. If the number of variables in a non-homogeneous system \(AX = B \) is \(n \), then the system possesses a unique solution only when
(a) \(\rho(A) = \rho(A, B) > n \)
(b) \(\rho(A) = \rho(A, B) < n \)
(c) \(\rho(A) = \rho(A, B) = n \)
(d) none of these

18. The system of equations \(4x + 6y = 5, 6x + 9y = 7 \) has
(a) a unique solution
(b) no solution
(c) infinitely many solutions
(d) none of these

19. For the system of equations \(x + 2y + 3z = 1, 2x + y + 3z = 25x + 5y + 9z = 4 \)
(a) there is only one solution
(b) there exists infinitely many solutions
(c) there is no solution
(d) None of these

20. If \(|A| \neq 0 \), then \(A \) is
(a) non-singular matrix
(b) singular matrix
(c) zero matrix
(d) none of these

21. The system of linear equations \(x + y + z = 2, 2x + y + z = 3, 3x + y + z = 4 \) has unique solution, if \(k \) is not equal to
(a) 4
(b) 0
(c) -4
(d) 1

22. Cramer’s rule is applicable only to get an unique solution when
(a) \(\Delta_x \neq 0 \)
(b) \(\Delta_y \neq 0 \)
(c) \(\Delta_z = 0 \)
(d) \(\Delta_y \neq 0 \)

23. If \(\frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2 \), \(\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \); \(\Delta_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \); \(\Delta_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \) then \((x, y)\) is
(a) \(\left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1} \right) \)
(b) \(\left(\frac{\Delta_1}{\Delta_2}, \frac{\Delta_1}{\Delta_3} \right) \)
(c) \(\left(\frac{\Delta_1}{\Delta_2}, \frac{\Delta_1}{\Delta_3} \right) \)
(d) \(\left(-\frac{\Delta_1}{\Delta_2}, -\frac{\Delta_1}{\Delta_3} \right) \)

24. \(|A_{\times n}| = 3, |adjA| = 243 \) then the value of \(n \) is
(a) 4
(b) 5
(c) 6
(d) 7

25. Rank of a null matrix is
(a) 0
(b) -1
(c) \(\infty \)
(d) 1

S. MUTHU M.Sc., B.Ed
PGT MATHEMATICS
LITTLE FLOWER MHSS
MOULIVAKKAM
CHENNAI - 125

OBJECTIVES (CHAPTER 1)

12th Standard

Business Maths

Reg.No. :
Total Marks : 25

Exam Time : 00:30:00 Hrs

Date : 14-Sep-19

1) If \(A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \), then the rank of \(AA^T \) is
 (a) 0 (b) 2 (c) 3 (d) 1

2) The rank of \(m \times n \) matrix whose elements are unity is
 (a) 0 (b) 1 (c) \(m \) (d) \(n \)

3) If \(T = \begin{pmatrix} \begin{array}{cc} 0.4 & 0.6 \\ 0.2 & 0.8 \end{array} \end{pmatrix} \) is a transition probability matrix, then at equilibrium \(A \) is equal to
 (a) \(\frac{1}{5} \) (b) \(\frac{1}{5} \) (c) \(\frac{1}{5} \) (d) \(\frac{1}{5} \)

4) If \(A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} \), then \(\rho(A) \) is
 (a) 0 (b) 1 (c) 2 (d) \(n \)

5) The rank of the matrix \(\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \) is
 (a) 0 (b) 1 (c) 2 (d) 3

6) The rank of the unit matrix of order \(n \) is
 (a) \(n-1 \) (b) \(n \) (c) \(n+1 \) (d) \(n^2 \)

7) If \(\rho(A) = r \) then which of the following is correct?
 (a) all the minors of order \(r \) which does not vanish
 (b) \(A \) has at least one minor of order \((r+1) \) which does not vanish
 (c) \(A \) has at least one order minor which vanishes
 (d) all \((r+1) \) and higher order minors should not vanish

8) If \(A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \) then the rank of \(AA^T \) is
 (a) 0 (b) 1 (c) 2 (d) 3

9) If the rank of the matrix \(\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix} \) is 2. Then \(\lambda \) is
 (a) 1 (b) 2 (c) 3 (d) only real number

10) The rank of the diagonal matrix
 \(\begin{pmatrix} 1 & 0 \\ -3 & 0 \\ 0 & 0 \end{pmatrix} \)
 (a) 0 (b) 2 (c) 3 (d) 5

11) If \(T = \begin{pmatrix} \begin{array}{cc} A & B \\ B & x \end{array} \end{pmatrix} \) is a transition probability matrix, then the value of \(x \) is
 (a) 0.2 (b) 0.3 (c) 0.4 (d) 0.7

12) Which of the following is not an elementary transformation?
13) if \(\rho(A) = \rho(A, B) \) then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Consistent
(d) inconsistent

14) If \(\rho(A) = \rho(A, B) \) = the number of unknowns, then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) consistent
(d) inconsistent

15) if \(\rho(A) \neq \rho(A, B) \), then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) inconsistent
(d) consistent

16) In a transition probability matrix, all the entries are greater than or equal to
(a) 2
(b) 1
(c) 0
(d) 3

17) If the number of variables in a non- homogeneous system \(AX = B \) is \(n \), then the system possesses a unique solution only when
(a) \(\rho(A) = \rho(A, B) > n \)
(b) \(\rho(A) = \rho(A, B) < n \)
(c) \(\rho(A) = \rho(A, B) = n \)
(d) none of these

18) The system of equations 4x+6y=5, 6x+9y=7 has
(a) a unique solution
(b) no solution
(c) infinitely many solutions
(d) none of these

19) For the system of equations \(x+2y+3z=1, 2x+y+3z=25x+5y+9z=4 \)
(a) there is only one solution
(b) there exists infinitely many solutions
(c) there is no solution
(d) None of these

20) if \(|A| \neq 0 \), then A is
(a) non- singular matrix
(b) singular matrix
(c) zero matrix
(d) none of these

21) The system of linear equations \(x+y+z=2,2x+y-z=3,3x+2y+k=4 \) has unique solution, if \(k \) is not equal to
(a) 4
(b) 0
(c) -4
(d) 1

22) Cramer’s rule is applicable only to get an unique solution when
(a) \(\Delta \neq 0 \)
(b) \(\Delta x \neq 0 \)
(c) \(\Delta x = 0 \)
(d) \(\Delta y \neq 0 \)

23) if \(\frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2 \), \(\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \); \(\Delta_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \); \(\Delta_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \) then \((x,y)\) is
(a) \(\left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1} \right) \)
(b) \(\left(\frac{\Delta_1}{\Delta_x}, \frac{\Delta_3}{\Delta_x} \right) \)
(c) \(\left(\frac{\Delta_1}{\Delta_2}, \frac{\Delta_3}{\Delta_2} \right) \)
(d) \(\left(\frac{-\Delta_1}{\Delta_x}, \frac{-\Delta_3}{\Delta_x} \right) \)

24) \(|A_{n \times n}| = 3 |adjA| = 243 \) then the value \(n \) is
(a) 4
(b) 5
(c) 6
(d) 7

25) Rank of a null matrix is
(a) 0
(b) -1
(c) \(\infty \)
(d) 1

S. MUTHU M.Sc., B.Ed
PGT MATHEMATICS
LITTLE FLOWER MHSS
MOULIVAKKAM
CHENNAI - 125

**
OBJECTIVES (CHAPTER 3)
12th Standard
Business Maths

Exam Time : 00:30:00 Hrs

1) Area bounded by the curve \(y = x (4 - x) \) between the limits 0 and 4 with \(x - \) axis is
 (a) \(\frac{30}{3} \) sq.units " (b) \(\frac{31}{3} \) sq.units " (c) \(\frac{32}{3} \) sq.units " (d) \(\frac{15}{2} \) sq.units

2) Area bounded by the curve \(y = e^{-2x} \) between the limits 0 ≤ \(x \) ≤ \(\infty \) is
 (a) 1 sq.units " (b) \(\frac{1}{2} \) sq.unit " (c) 5 sq.units " (d) 2 sq.units

3) Area bounded by the curve \(y = \frac{1}{x} \) between the limits 1 and 2 is
 (a) log2 sq.units " (b) log5 sq.units " (c) log3 sq.units " (d) log 4 sq.units

4) If the marginal revenue function of a firm is \(MR = e^{\frac{x}{30}} \), then revenue is
 (a) \(-10e^{\frac{x}{30}}\) " (b) \(1 - e^{\frac{x}{30}}\) " (c) \(10 \left(1 - e^{\frac{x}{30}}\right)\) " (d) \(e^{\frac{x}{30}} + 10\)

5) If MR and MC denotes the revenue and marginal cost functions, then the profit functions is
 (a) \(P = \int (MR - MC) \, dx + k\) " (b) \(P = \int (MR + MC) \, dx + k\) " (c) \(P = \int (MR)(MC) \, dx + k\) " (d) \(P = \int (R - C) \, dx + k\)

6) The demand and supply functions are given by \(D(x) = 16 - x^2 \) and \(S(x) = 2x^2 + 4 \) are under perfect competition, then the equilibrium price \(x \) is
 (a) 2 " (b) 3 " (c) 4 " (d) 5

7) The marginal revenue and marginal cost functions of a company are \(MR = 30 - 6x \) and \(MC = -24 + 3x \) where \(x \) is the product, then the profit function is
 (a) \(9x^2 + 54x\) " (b) \(9x^2 - 54x\) " (c) \(54x - \frac{9x^2}{2}\) " (d) \(54x - \frac{9x^2}{2} + k\)

8) The given demand and supply function are given by \(D(x) = 20 - 5x \) and \(S(x) = 4x + 8 \) if they are under perfect competition then the equilibrium demand is
 (a) 40 " (b) \(\frac{41}{2}\) " (c) \(\frac{40}{3}\) " (d) \(\frac{41}{5}\)

9) If the marginal revenue \(MR = 35 + 7x - 3x^2 \), then the average revenue \(AR \) is
 (a) \(35x + \frac{7x^2}{2} - x^3\) " (b) \(35x - \frac{7x^2}{2} - x^2\) " (c) \(35 + \frac{7x^2}{2} + x^2\) " (d) \(35 + 7x + x^2\)

10) The profit of a function \(p(x) \) is maximum when
 (a) \(MC - MR = 0\) " (b) \(MC = 0\) " (c) \(MR = 0\) " (d) \(MC + MR = 0\)

11) For the demand function \(p(x) \), the elasticity of demand with respect to price is unity then
 (a) revenue is constant " (b) cost function is constant " (c) profit is constant " (d) none of these

12) The demand function for the marginal function \(MR = 100 - 9x^2 \) is
 (a) \(100 - 3x^2\) " (b) \(100x - 3x^2\) " (c) \(100x - 9x^2\) " (d) \(100 + 9x^2\)

13) When \(x_0 = 5 \) and \(p_0 = 3 \) the consumer’s surplus for the demand function \(p_d = 28 - x^2 \) is
 (a) 250 units " (b) \(\frac{250}{3}\) units " (c) \(\frac{251}{7}\) units " (d) \(\frac{251}{3}\) units

14) When \(x_0 = 2 \) and \(P_0 = 12 \) the producer’s surplus for the supply function \(P_s = 2x^2 + 4 \) is
 (a) \(\frac{31}{5}\) units " (b) \(\frac{31}{2}\) units " (c) \(\frac{32}{3}\) units " (d) \(\frac{30}{7}\) units

15) Area bounded by \(y = x \) between the lines \(y = 1 \), \(y = 2 \) with \(y = axis \) is
 (a) \(\frac{1}{2}\) sq.units " (b) \(\frac{5}{2}\) sq.units " (c) \(\frac{3}{2}\) sq.units " (d) 1 sq.unit

16) The producer’s surplus when the supply function for a commodity is \(P = 3 + x \) and \(x_0 = 3 \) is
 (a) \(\frac{5}{2}\) " (b) \(\frac{9}{2}\) " (c) \(\frac{3}{2}\) " (d) \(\frac{7}{2}\)

17) The marginal cost function is \(MC = 100 \sqrt{x} \). find \(AC \) given that \(TC = 0 \) when the out put is zero is
 (a) \(\frac{200}{3} \sqrt{x}\) " (b) \(\frac{200}{3} x^{\frac{1}{2}}\) " (c) \(\frac{200}{3x^{\frac{1}{2}}}\) " (d) \(\frac{200}{3} x^{\frac{1}{2}}\)
18) The demand and supply function of a commodity are \(P(x) = (x - 5)^2 \) and \(S(x) = x^2 + x + 3 \) then the equilibrium quantity \(x_0 \) is
 (a) 5
 (b) 2
 (c) 3
 (d) 19

19) The demand and supply function of a commodity are \(D(x) = 25 - 2x \) and \(S(x) = \frac{10 - x}{4} \) then the equilibrium price \(P_0 \) is
 (a) 5
 (b) 2
 (c) 3
 (d) 10

20) If \(MR \) and \(MC \) denote the marginal revenue and marginal cost and \(MR - MC = 36x - 3x^2 - 81 \), then the maximum profit at \(x \) is equal to
 (a) 3
 (b) 6
 (c) 9
 (d) 5

21) If the marginal revenue of a firm is constant, then the demand function is
 (a) \(MR \)
 (b) \(MC \)
 (c) \(C(x) \)
 (d) \(AC \)

22) For a demand function \(p \), if \(\int \frac{dp}{p} = k \int \frac{dx}{x} \) then \(k \) is equal to
 (a) \(\eta d \)
 (b) \(-\eta d \)
 (c) \(\frac{1}{\eta d} \)
 (d) \(\frac{1}{\eta d} \)

23) Area bounded by \(y = e^x \) between the limits 0 to 1 is
 (a) \((e - 1) \) sq.units
 (b) \((e + 1) \) sq.units
 (c) \((1 - \frac{1}{e}) \) sq.units
 (d) \((1 + \frac{1}{e}) \) sq.units

24) The area bounded by the parabola \(y^2 = 4x \) bounded by its latus rectum is
 (a) \(\frac{16}{3} \) sq.units
 (b) \(\frac{8}{3} \) sq.units
 (c) \(\frac{72}{3} \) sq.units
 (d) \(\frac{1}{3} \) sq.units

25) Area bounded by \(y = |x| \) between the limits 0 and 2 is
 (a) 1 sq.units
 (b) 3 sq.units
 (c) 2 sq.units
 (d) 4 sq.units

S. MUTHU M.Sc., B.Ed
PGT MATHEMATICS
LITTLE FLOWER MHSS
MOULIVAKKAM
CHENNAI -125

OBJECTIVES (CHAPTER 4)

12th Standard
Business Maths

Date: 14-Sep-19
Reg. No.: 25 x 1 = 25
Total Marks: 25

Exam Time: 00:30:00 Hrs

I. Choose the correct answer:

1) The degree of the differential equation \(\frac{d^4y}{dx^4} \left(\frac{d^2y}{dx^2} \right)^4 + \frac{dy}{dx} = 3 \)
 (a) 1 (b) 2 (c) 3 (d) 4

2) The order and degree of the differential equation \(\sqrt[2]{\frac{d^2y}{dx^2}} = \sqrt[1]{\frac{dy}{dx} + 5} \) are respectively
 (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2

3) The order and degree of the differential equation \(\left(\frac{d^3y}{dx^3} \right)^{\frac{1}{2}} - \sqrt[2]{\frac{dy}{dx}} - 4 = 0 \) are respectively
 (a) 2 and 6 (b) 3 and 6 (c) 1 and 4 (d) 2 and 4

4) The differential equation \(\left(\frac{dx}{dy} \right)^3 + 2y^\frac{1}{2} = x \) is
 (a) of order 2 and degree 1 (b) of order 1 and degree 3 (c) of order 1 and degree 6 (d) of order 1 and degree 2

5) The differential equation formed by eliminating \(a \) and \(b \) from \(y = ae^x + be^{-x} \) is
 (a) \(\frac{d^2y}{dx^2} - y = 0 \) (b) \(\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0 \) (c) \(\frac{d^2y}{dx^2} = 0 \) (d) \(\frac{d^2y}{dx^2} - x = 0 \)

6) The integrating factor of the differential equation \(\frac{dy}{dx} + Px = Q \)
 (a) \(e^{\int Pa} \) (b) \(e^{\int Pb} \) (c) \(\int Pdx \) (d) \(e^{\int Pdy} \)

7) If \(y = cx + c - c^3 \) then its differential equation is
 (a) \(y = \frac{dy}{dx} - \left(\frac{dy}{dx} \right)^3 \) (b) \(y = \left(\frac{dy}{dx} \right)^3 = x \frac{dy}{dx} - \frac{dy}{dx} \)
 (c) \(\frac{dy}{dx} + y = \left(\frac{dy}{dx} \right)^3 - x \frac{dy}{dx} \) (d) \(\frac{dy}{dx} = 0 \)

8) The complementary function of \((D^2 + 4)y = e^{2x} \) is
 (a) \((Ax + B)e^{2x} \) (b) \((Ax + B)e^{-2x} \) (c) \(A \cos 2x + B \sin 2x \)
 (d) \(Ae^{-2x} + Be^{2x} \)

9) The differential equation of \(y = mx + c \) is (\(m \) and \(c \) are arbitrary constants)
 (a) \(\frac{d^2y}{dx^2} = 0 \) (b) \(y = x \frac{dy}{dx} + c \) (c) \(x \frac{dy}{dx} + ydx = 0 \)
 (d) \(ydx - xdy = 0 \)

10) The particular integral of the differential equation is \(\frac{d^2y}{dx^2} - 8 \frac{dy}{dx} + 16y = 2e^{4x} \)
 (a) \(\frac{x^2e^{4x}}{2!} \) (b) \(e^{4x} \) (c) \(x^2e^{4x} \)
 (d) \(xe^{4x} \)

11) Solution of \(\frac{dy}{dx} + Px = 0 \)
 (a) \(x = ce^{py} \) (b) \(x = ce^{-py} \) (c) \(x = py + c \)
 (d) \(x = cy \)

12) If \(\sec^2 x \) is an integrating factor of the differential equation \(\frac{dy}{dx} + Py \) then \(P = \)
 (a) 2 tan x (b) sec x (c) \(\cos^2 x \) (d) \(\tan^2 x \)

13) The integrating factor of \(\frac{dy}{dx} - y = x^2 \) is
 (a) \(\frac{-1}{x} \) (b) \(\frac{1}{x} \) (c) \(\log x \)
 (d) \(x \)
14) The solution of the differential equation \(\frac{dy}{dx} + Py = Q \) where \(P \) and \(Q \) are the function of \(x \) is
(a) \(y = \int Qe^{\int Pdx}dx + c \) (b) \(y = \int Qe^{\int Pdx}dx + c \) (c) \(ye^{\int Pdx} = \int Qe^{\int Pdx}dx + c \) (d) \(ye^{\int Pdx} = \int Qe^{\int Pdx}dx + c \)

15) The differential equation formed by eliminating \(A \) and \(B \) from \(y = e^{-2x}(A \cos x + B \sin x) \) is
(a) \(y_2 - 4y_1 + 5 = 0 \) (b) \(y_2 + 4y - 5 = 0 \) (c) \(y_2 - 4y_1 - 5 = 0 \) (d) \(y_2 + 4y_1 + 5 = 0 \)

16) The particular integral of the differential equation \(f(D)y = e^{ax} \) where \(f(D) = (D-a)^2 \)
(a) \(\frac{x^2}{2}e^{ax} \) (b) \(xe^{ax} \) (c) \(\frac{x}{2}e^{ax} \) (d) \(x^2e^{ax} \)

17) The differential equation of \(x^2 + y^2 = a^2 \)
(a) \(xdy + ydx = 0 \) (b) \(ydx - ydx = 0 \) (c) \(xdx - ydx = 0 \) (d) \(xdx + ydy = 0 \)

18) The complementary function of \(\frac{dy}{dx} = \int Pdx + \frac{dy}{dx} = 0 \) is
(a) \(A + Be^x \) (b) \((A + B)e^x \) (c) \((Ax + B)e^x \) (d) \(Ae^x + B \)

19) The P.I of \((3D^2 + D - 14)y = 13e^{2x}\) is
(a) \(\frac{x^2}{2}e^{2x} \) (b) \(xe^{2x} \) (c) \(\frac{x}{2}e^{2x} \) (d) \(13xe^{2x} \)

20) The general solution of the differential equation \(\frac{dy}{dx} = \cos x \) is
(a) \(y = \sin x + c \) (b) \(y = \sin x - c \) (c) \(y = \cos x + c, c \) is an arbitrary constant (d) \(y = \sin x + c, c \) is an arbitrary constant

21) A homogeneous differential equation of the form \(\frac{dy}{dx} = f\left(\frac{y}{x}\right) \) can be solved by making substitution,
(a) \(y = v x \) (b) \(v = y x \) (c) \(x = v y \) (d) \(x = v \)

22) A homogeneous differential equation of the form \(\frac{dy}{dx} = f\left(\frac{y}{x}\right) \) can be solved by making substitution,
(a) \(x = v y \) (b) \(y = v x \) (c) \(y = v \) (d) \(x = v \)

23) The variable separable form of \(\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)} \) by taking \(yvx \) and \(\frac{dy}{dx} = v + \frac{dy}{dx} \)
(a) \(2\frac{e^2v}{1+v}dv = \frac{dx}{x} \) (b) \(\frac{2e^2}{1+v}dv = \frac{dx}{x} \) (c) \(\frac{2e^2}{1-v}dv = \frac{dx}{x} \) (d) \(\frac{1+v}{2v^2}dv = -\frac{dx}{x} \)

24) Which of the following is the homogeneous differential equation?
(a) \((3x-5)dy = (4y-1)dx \) (b) \(xy dx - (x^3+y^3)dy = 0 \) (c) \(y^2 dx + (x^2 - xy - y^2)dy = 0 \) (d) \((x^2+y)dx = (y^2+x)dy \)

25) The solution of the differential equation \(\frac{dy}{dx} = y + \frac{f\left(\frac{v}{x}\right)}{f\left(\frac{v}{x}\right)} \) is
(a) \(f\left(\frac{v}{x}\right) = kx \) (b) \(xf\left(\frac{v}{x}\right) = k \) (c) \(f\left(\frac{v}{x}\right) = ky \) (d) \(yf\left(\frac{v}{x}\right) = k \)

S.MUTHU M.Sc., B.Ed
PGT MATHEMATICS
LITTLE FLOWER MHSS
MOULIVAKKAM
CHENNAI -125
OBJECTIVES (CHAPTER 5)
12th Standard
Business Maths

Date: 14-Sep-19
Reg.No.:
Total Marks: 14

Exam Time: 00:15:00 Hrs

1) \(\Delta^2 y_0 = \)
 (a) \(y_2 - 2y_1 + y_0 \)
 (b) \(y_2 + 2y_1 - y_0 \)
 (c) \(y_2 + 2y_1 + y_0 \)
 (d) \(y_2 + y_1 + 2y_0 \)

2) \(\Delta f(x) = \)
 (a) \(f(x+h) \)
 (b) \(f(x) - f(x+h) \)
 (c) \(f(x+h) - f(x) \)
 (d) \(f(x) - f(x-h) \)

3) \(E = \)
 (a) \(1 + \Delta \)
 (b) \(1 - \Delta \)
 (c) \(1 + \nabla \)
 (d) \(1 - \nabla \)

4) If \(h = 1 \), then \(\Delta(x^2) = \)
 (a) \(2x \)
 (b) \(2x - 1 \)
 (c) \(2x + 1 \)
 (d) \(1 \)

5) If \(c \) is a constant then \(\Delta c = \)
 (a) \(c \)
 (b) \(\Delta \)
 (c) \(\Delta^2 \)
 (d) \(0 \)

6) If \(m \) and \(n \) are positive integers then \(\Delta^m \Delta^n f(x) = \)
 (a) \(\Delta^m \Delta^n f(x) \)
 (b) \(\Delta^m f(x) \)
 (c) \(\Delta^n f(x) \)
 (d) \(\Delta^m \Delta^n f(x) \)

7) If \('n' \) is a positive integer \(\Delta^n f(x) \)
 (a) \(f(2x) \)
 (b) \(f(x+h) \)
 (c) \(f(x) \)
 (d) \(\Delta f(x) \)

8) \(\nabla f(x) = \)
 (a) \(f(x-h) \)
 (b) \(f(x) \)
 (c) \(f(x+h) \)
 (d) \(f(x+2h) \)

9) \(\nabla = \)
 (a) \(1 + E \)
 (b) \(1 - E \)
 (c) \(1 - E^{-1} \)
 (d) \(1 + E^{-1} \)

10) \(\nabla f(a) = \)
 (a) \(f(a) + f(a+h) \)
 (b) \(f(a) - f(a+h) \)
 (c) \(f(a) - f(a-h) \)
 (d) \(f(a) \)

11) For the given points \((x_0, y_0)\) and \((x_1, y_1)\) the Lagrange’s formula is
 (a) \(y(x) = \frac{x-x_0}{x_1-x_0} y_0 + \frac{x-x_1}{x_1-x_0} y_1 \)
 (b) \(y(x) = \frac{x-x_0}{x_1-x_0} y_0 + \frac{x-x_0}{x_1-x_0} y_1 \)
 (c) \(y(x) = \frac{x-x_1}{x_0-x_1} y_1 + \frac{x-x_0}{x_0-x_1} y_0 \)

12) Lagrange’s interpolation formula can be used for
 (a) equal intervals only
 (b) unequal intervals only
 (c) both equal and unequal intervals
 (d) none of these.

13) If \(f(x) = x^2 + 2x + 2 \) and the interval of differencing is unity then \(\Delta f(x) \)
 (a) \(2x - 3 \)
 (b) \(2x + 3 \)
 (c) \(x + 3 \)
 (d) \(x - 3 \)

14) For the given data find the value of \(\Delta^3 y_0 \) is
 \[
 \begin{array}{c|c|c|c|c|c}
 x & 5 & 6 & 9 & 11 \\
 y & 12 & 13 & 15 & 18 \\
 \end{array}
 \]
 (a) 1
 (b) 0
 (c) 2
 (d) -1

S.MUTHU M.Sc., B.Ed
PGT MATHEMATICS
LITTLE FLOWER MHSS
MOULIVAKKAM
CHENNAI -125